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Abstract

LLM:s for clinical decision support often fail under small but clini-
cally meaningful input shifts such as masking a symptom or negat-
ing a finding, despite high performance on static benchmarks. These
reasoning failures frequently go undetected by standard NLP met-
rics, which are insensitive to latent representation shifts that drive
diagnosis instability. We propose a geometry-aware evaluation
framework, LAPD (Latent Agentic Perturbation Diagnostics), which
systematically probes the latent robustness of clinical LLMs under
structured adversarial edits. Within this framework, we introduce
Latent Diagnosis Flip Rate (LDFR), a model-agnostic diagnostic
signal that captures representational instability when embeddings
cross decision boundaries in PCA-reduced latent space. Clinical
notes are generated using a structured prompting pipeline grounded
in diagnostic reasoning, then perturbed along four axes—masking,
negation, synonym replacement, and numeric variation to simulate
common ambiguities and omissions. We compute LDFR across both
foundation and clinical LLMs, finding that latent fragility emerges
even under minimal surface-level changes. Finally, we validate
our findings on 90 real clinical notes from the DiReCT benchmark
(MIMIC-1V), confirming the generalizability of LDFR beyond syn-
thetic settings. Our results reveal a persistent gap between surface
robustness and semantic stability, underscoring the importance of
geometry-aware auditing in safety-critical clinical AL
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1 Introduction

LLMs like GPT-4[16] achieve near-human accuracy on medical
benchmarks such as CMExam and MedQA[6], but these static met-
rics do not assess stability under clinically realistic variation. In
high-stakes environments, robustness is very critical, like accuracy.
While benchmarks provide a point estimate of correctness, they fail
to measure whether models produce consistent diagnoses when
inputs vary in natural but subtle ways.

Unlike output-level agreement metrics, LDFR reveals latent repre-
sentation shifts that signal unstable diagnostic reasoning. Common
metrics such as F1, EM, BERTScore[29], BLEU[17], and ROUGE[11]
focus on surface similarity, not deeper clinical reasoning. They
overlook shifts introduced by negation (e.g., “denies chest pain”),
masking (e.g., privacy redactions), or synonym substitution (“heart
attack” vs “myocardial infarction”). As a result, models may score
highly yet remain brittle to changes that are common in clinical
documentation.

We refer to this vulnerability as diagnostic fragility: when
small, clinically grounded edits to input cause significant changes
in the model’s output diagnosis. MedFuzz[15] showed that even
high-performing LLMs exhibit such volatility, but prior work has
focused on whether the output label changes without examining
how the internal representation shifts.

We argue that robustness also involves stability in the model’s
internal reasoning. To capture this, we go beyond output agree-
ment and introduce a metric that measures latent instability: the
Latent Diagnosis Flip Rate (LDFR). LDFR quantifies how often a
structured perturbation causes the latent embedding to cross a diag-
nostic decision boundary in PCA-reduced space. These flips reveal
underlying model sensitivity even when surface-level similarity
remains high.

This motivates our framework: LAPD (Latent Agentic Pertur-
bation Diagnostics). LAPD uses synthetic clinical notes generated
from an LLM-based pipeline and applies structured perturbations
masking, negation, synonym replacement, and numerical edits at
controlled thresholds. These edits are not semantically neutral, but
deliberately designed as stressors to probe stability in diagnostic
reasoning, as outlined in Figure 1. To quantify this instability, we
introduce the Latent Diagnosis Flip Rate (LDFR), which mea-
sures how often perturbations cause embeddings to cross diagnostic
decision boundaries in latent space.

In our analysis, we find that entity masking and negation con-
sistently trigger large changes in LDFR, even when surface metrics
like BERTScore remain above 0.9. Latent decision flips tend to occur
along high-variance PCA axes, indicating that a small number of
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Figure 1: Overview of the LAPD evaluation pipeline. Synthetic or real clinical notes are processed through structured perturba-
tion and latent embedding projection. The resulting representations are analyzed for fragility using geometry-aware metrics

(e.g., LDFR) and surface-level clinical agreement.

directions in the embedding space explain most of the instability.
Importantly, these patterns generalize from synthetic notes to real
clinical records from MIMIC-IV (DiReCT), confirming the broader
applicability of our findings.
Our main contributions are:

o We present LAPD, a geometry-aware evaluation framework
that probes the latent robustness of clinical LLMs using struc-
tured, clinically grounded perturbations.

e We introduce the Latent Diagnosis Flip Rate (LDFR), a
model-agnostic metric that captures semantic instability
through boundary crossings in PCA-reduced embedding
space.

e We show that LDFR exposes diagnostic fragility overlooked
by surface metrics, and generalizes to real clinical notes from
DiReCT supporting its use in auditing clinical LLMs.

2 Related Work

Robustness evaluation of clinical LLMs has primarily focused on
surface-level stability under textual perturbations. Techniques such
as MedFuzz [15] and PerturbScore [8] assess performance degra-
dation under attribute-level fuzzing or paraphrase variations, but
rely on output fidelity metrics like BERTScore or NER-F1. These
approaches do not capture whether the underlying diagnostic rea-
soning process remains intact, nor whether latent representations
remain within stable decision regions. Moreover, these evaluations
are typically conducted on pre-curated datasets, rather than gener-
ated in an interactive, agent-driven pipeline.

Early representation methods such as Med2Vec [2] and transformer-
based EHR embeddings [27] laid the groundwork for patient-level
understanding, but they were not designed to capture robustness
under naturalistic variation.

Recent work has explored geometry-aware metrics to analyze
latent drift and embedding robustness. Studies have used PCA vari-
ance [28], Procrustes distance [5], and low-rank subspace methods
to characterize representation shifts. Manifold-based techniques
[20] and vocabulary unification strategies [7] have further aimed
to align clinical semantics, though their robustness implications
remain underexplored. The work by Liu et al. [12] extends latent
probing to adversarial reasoning stability by testing logical con-
sistency properties such as transitivity and negation invariance
across LLM outputs. However, their framework focuses on abstract
reasoning tasks and does not ground latent shifts in specific clinical

diagnostic decisions, as our LDFR metric does. Our proposed Latent
Diagnosis Flip Rate (LDFR) fills this gap by detecting whether con-
trolled, clinically plausible perturbations cause embeddings to cross
decision boundaries tied to actual diagnostic outcomes. Comple-
mentary efforts in probing semantic generalization [18] similarly
explore latent-space reasoning, though not in diagnosis-specific
settings.

In broader evaluation research, tools like ROSCOE [4], ReCEval
[19], and CheckList [21] test reasoning consistency and behav-
ioral coverage, while factuality frameworks such as FactScore and
FEVER assess correctness in generated content. TextFlint [25] and
TextAttack [14] provide adversarial input generation pipelines, but
lack mechanisms to evaluate whether such perturbations lead to
meaningful shifts in diagnostic decision-making. These methods
are valuable for general-purpose LLM auditing, but are not designed
to evaluate diagnostic integrity or label alignment in latent space.
Unlike these, LDFR focuses on *reasoning stability” rather than
hallucination detection or surface fluency.

A growing body of work now leverages agent-based frame-
works not just for generation, but also for evaluation. Agent-as-
a-Judge framework [30] proposes a process in which agents au-
tonomously assess the reasoning accuracy of other agents’ out-
put, creating a scalable and automated audit loop. This paradigm
inspires our own design, where the same LLM agents generate
reasoning-grounded clinical notes and perform structured adver-
sarial perturbations for robustness assessment. [26] introduces a
latent chain probing strategy to assess LLM outputs using inter-
nal embedding dynamics rather than surface labels. Their findings
support our core claim that latent shifts rather than just output
deviations can serve as a diagnostic signal of reasoning instability.
Our framework integrates these ideas by applying geometric probes
to detect clinically-relevant diagnosis flips in a label-aware latent
space. Related retrieval-augmented models like Med-PaLM [22] and
clinical entity linking approaches [13] enhance factual grounding
in LLMs, but remain largely unevaluated under perturbation.

Finally, the need for robust diagnostic evaluation arises across
clinical NLP benchmarks. While tasks like MedQA [6], CMExam,
and MedNLI focus on accuracy or entailment under static con-
ditions, recent studies [3, 9] show that model representations in
biomedical contexts are often unstable. Transformer-based clini-
cal documentation systems [1, 10, 24] exhibit high performance
on static tasks, but their internal consistency under adversarial
conditions remains underexamined. LAPD unifies these strands by
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Figure 2: Overview of our framework (LAPD) through a constructed example illustrating latent diagnostic fragility. The
left panel shows a synthetic clinical note generated by our prompting pipeline and diagnosed as GERD. The center panel
applies masking to a key symptom (“chest pain”), resulting in a surface-similar variant that elicits a different diagnosis: Atrial
Fibrillation. In the right panel, PCA-projected latent embeddings show that this perturbation crosses a diagnostic decision
boundary. While this example is illustrative and not drawn from the evaluation set, it reflects a broader trend observed in our

results: entity masking can cause latent representation shifts that lead to diagnosis flips, even under minor surface edits.

examining whether reasoning remains geometrically stable under
adversarial perturbations.

3 Agentic Generation and Perturbation Setup

3.1 Agentic Simulation of Diagnostic Notes

The LAPD pipeline is shown in Figure 1. Agentic note genera-
tion (left) begins with structured prompting grounded in DDXPlus,
producing diagnosis-grounded narratives. Perturbation modules
(middle) apply perturbation edits along four semantic axes. These
perturbed notes are passed through frozen clinical encoders (right),
and their latent representations are evaluated via PCA-based classi-
fication, variance analysis, and latent flip detection (LDFR).

We generate structured clinical notes using a reasoning-augmented
agentic pipeline grounded in the DDXPlus dataset [23]. Each note
is produced through three chained prompts: (1) forward reasoning
(symptoms to diagnosis), (2) backward justification (diagnosis to
rationale), and (3) narrative construction. This agentic simulation
creates interpretable, diagnosis-grounded synthetic notes while
avoiding direct reuse of patient records. These controlled inputs
enable systematic robustness evaluation. Full prompting templates
are available in Appendix A.2.

3.2 Clinically Grounded Perturbation Strategies

We apply four types of clinically motivated perturbations to test
robustness:

e Entity Masking (Omission): Replaces medically salient
entities with [MASK].

o Negation (Omission): Reverses polarity of symptoms, e.g.,
“has chest pain” — “no chest pain”

e Synonym Replacement (Substitution): Substitutes phrases
with equivalent clinical terms.

e Numerical Perturbation (Distortion): Alters vitals/labs
by +£5%-15%.

Each method is applied at 0%-100% intensity by proportion of enti-
ties perturbed. For example, at 50% threshold, half of all extractable
clinical entities are modified. These edits are not meant to preserve
meaning, but to stress-test the LLM’s internal diagnostic consis-
tency.

3.3 Evaluation on Real Clinical Notes

To test robustness beyond synthetic data, we apply the same pipeline
to 90 notes from the DiReCT benchmark based on MIMIC-IV. These
notes average 870 tokens and include complex entity structures. We
use Clinical-Longformer to encode full-length notes without trunca-
tion. This setting approximates real-world usage and complements
our controlled synthetic evaluations.

4 Latent Robustness Evaluation Framework

4.1 Surface-Level Evaluation Baselines
We compute the following standard metrics to quantify textual
fidelity:
e ROUGE-L, BERTScore (F1): Lexical and semantic similar-
ity.
¢ NER F1, Jaccard Index: Entity preservation.

e Centroid Drift: Euclidean distance between original and
perturbed note embeddings.

These serve as baselines. However, they fail to capture semantic
instability where diagnosis changes despite surface similarity.
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4.2 Latent Representation and PCA Probing

We embed notes using frozen ClinicalBERT (synthetic) or Clinical-
Longformer (real). PCA is applied to unperturbed embeddings to
retain 90% variance, yielding 30-40 principal components. A logis-
tic regression classifier is trained on these projections to predict
original diagnoses. This classifier models latent decision boundaries.
It is used solely for probing, not as a substitute model.

To ensure classifier robustness, we validate performance via
10-fold cross-validation. Hyperparameters are reported in Appen-
dix A.6.

4.3 Latent Diagnosis Flip Rate (LDFR)

We define LDFR as the proportion of perturbed samples whose
latent representations cross the diagnostic boundary:

N
1 . .
LDER(1) = — > 1[dg” # af]
i=1

where dél) and dt(l) are classifier predictions for unperturbed and
perturbed notes, respectively. We also compute DFR, the LLM’s
own diagnostic flip rate, to assess alignment with boundary-crossing
behaviour.

4.4 Complementary Latent Metrics
We further interpret latent robustness through:

e Centroid Displacement: Mean embedding shift across per-
turbations.

e Per-Dimension Variance: Encoder output dimensional
variance reveals which directions drive instability.

4.5 Clinician Evaluation of Diagnostic Realism

Two clinicians evaluated five synthetic notes on structure, diag-
nostic clarity, and reasoning depth (0-3 scale). Scores ranged from
2.0-2.7. Qualitative feedback noted missing vitals, incomplete dif-
ferentials, and unrealistic symptom presentation. This affirms the
use of controlled perturbations to surface latent fragility. Reviewers
were independent and unaffiliated with the project.

5 Experimental Setup

We now describe the experimental setup used to instantiate the
evaluation framework described in Section 4. This includes the
choice of language models, dataset sources, perturbation statistics,
and embedding details.

5.1 Model Selection

We evaluate two categories of models:
General-Purpose Foundation Models:
gpt-3.5-turbo-0125, gpt-40-mini-2024-07-18, llama-3.1-8b-instant,
and open-mistral-7b are included to assess fragility at the founda-
tional level before domain-specific adaptation. This helps reveal
vulnerabilities that may persist across deployment contexts.
Clinical-Specific Models:
medgemma-27b is tested to benchmark robustness among medical-
domain fine-tuned models. These help evaluate if clinical training
enhances perturbation resistance.

Vijayaraj

All models are accessed through inference APIs or local deploy-
ment, with temperature fixed at 0 or 0.01 and max token length of
512.

5.2 Dataset Sources

Agentic Synthetic Notes:
Derived from DDXPlus dialogues across 7 diagnoses: Pneumo-
nia, Pulmonary Embolism, Atrial Fibrillation, Tuberculosis, GERD,
Asthma, COPD. We generate 100 notes per diagnosis, each aver-
aging 410 tokens (SD = 56) and containing 8 extractable clinical
entities.

Real Clinical Notes:
We evaluate 90 discharge summaries from the DiReCT benchmark
(MIMIC-IV). These average 870 tokens (SD = 142) and contain 13.2
named entities per note. This enables testing on longer, messier,
and more realistic inputs.

5.3 Perturbation Procedure and Matrix

We apply four perturbation types (defined in Section 4.2) masking,
negation, synonym replacement, and numerical edits, at 5 intensity
thresholds (0%, 25%, 50%, 75%, 100%).

Perturbation Matrix Statistics:

o Synthetic notes: 100 unperturbed notes X 4 perturbation
types X 5 thresholds = 2, 000 perturbed samples.

¢ Real notes: 90 notes X 4 types X 5 thresholds = 1, 800 addi-
tional samples.

We extract entities using a clinical NER pipeline, and perturba-
tions are applied proportionally to threshold.

5.4 Embedding and Classifier Configuration

Synthetic notes are encoded using ClinicalBERT; real notes are
encoded with Clinical-Longformer to avoid truncation. All em-
beddings are frozen. PCA is applied to unperturbed samples, retain-
ing 90% variance (typically 30-40 components). A logistic classifier
is trained in this space to estimate latent boundaries.

Classifier performance is validated via 5-fold cross-validation,
and hyperparameter details are in Appendix A.6.

6 Results

To assess the robustness of diagnostic reasoning in LLMs, we eval-
uate model behavior under structured perturbations across both
surface-level and latent metrics. Our goal is to understand not only
whether predictions change, but also how internal representations
shift even when the text appears similar on the surface. We begin
by comparing traditional NLP metrics with our latent diagnostic
flip rate (LDFR) to uncover hidden fragility that surface scores may
overlook.

6.1 Surface vs Latent Metrics

Appendix A.5 shows that surface metrics such as ROUGE-L and
BERTScore remain high even when the model’s diagnosis changes.
For example, at 25% masking, BERTScore stays above 0.89 while
diagnosis accuracy drops significantly. At the same time, LDFR
decreases, indicating that latent agreement breaks down even when
surface similarity remains high. This highlights a key limitation
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Table 1: Boundary crossings in latent space predict real diagnostic flips. This table reports Pearson and Spearman correlations
between PCA-based classifier predictions and LLM outputs under increasing perturbation thresholds. Masked entities cause
the sharpest drop in correlation, suggesting nonlinear semantic drift, while other perturbations (e.g., numerical) preserve
alignment, highlighting varying degrees of latent instability.

Method Threshold Pearson Spearman LDFR
0.00 0.944 0.944 0.9125
0.25 0.493 0.493 0.5525
Masked Entities 0.50 0.380 0.380 0.4900
0.75 0.322 0.322 0.4075
1.00 0.317 0.317 0.3525
0.00 0.944 0.944 0.9125
0.25 0.848 0.848 0.8525
Negated Entities 0.50 0.744 0.744 0.8000
0.75 0.709 0.709 0.7375
1.00 0.702 0.702 0.7050
0.00 0.944 0.944 0.9125
0.25 0.845 0.845 0.8750
Synonym Replacement 0.50 0.793 0.793 0.8400
0.75 0.728 0.728 0.7950
1.00 0.692 0.692 0.7325
0.00 0.944 0.944 0.9125
0.25 0.894 0.894 0.8925
Numerical Perturbations  0.50 0.853 0.853 0.8750
0.75 0.900 0.900 0.8950
1.00 0.880 0.880 0.8925

Table 2: LDFR alignment with LLM predictions on real clinical notes (DiReCT).

Method Threshold Pearson Spearman LDFR
0.00 0.5456 0.5456 0.6923
0.25 0.2640 0.2640 0.5187
Masked Entities 0.50 0.3001 0.3001 0.5143
0.75 0.3377 0.3377 0.4681
1.00 0.2601 0.2601 0.4198
0.00 0.5456 0.5456 0.6945
0.25 0.1621 0.1621 0.4000
Negated Entities 0.50 0.2991 0.2991 0.4110
0.75 0.2058 0.2058 0.3956
1.00 0.2130 0.2130 0.4198
0.00 0.5456 0.5456 0.6989
0.25 0.5270 0.5270 0.6879
Synonym Replacement 0.50 0.4586 0.4586 0.6352
0.75 0.3406 0.3406 0.6022
1.00 0.4032 0.4032 0.6022
0.00 0.5590 0.5590 0.6923
0.25 0.5270 0.5270 0.6857
Numerical Perturbations  0.50 0.5079 0.5079 0.6769
0.75 0.5079 0.5079 0.6989

1.00 0.4823 0.4823 0.6813




Agentic & GenAl Evaluation at KDD 2025, August 4, 2025, Toronto, Canada

accuracy vs. Threshold
Dataset: super_seven | Method: masked_entities

® gpt-3.5-turbo-0125

gpt-40-mini-2024-07-18
o llama-3.1-8b-instant
08 ® open-mistral-7b

accuracy
°
3
'}

°
&
»

05

04
Threshold

(a) Masked Entities: Most disruptive perturbation. Steep accuracy
drop across all models suggests LLMs heavily rely on explicitly
stated entities for diagnosis.
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(c) Synonym Replacements: Model-dependent effects. Some mod-
els show resilience while others misinterpret lexical variants.
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accuracy vs. Threshold
Dataset: super_seven | Method: negated_entities
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(b) Negated Entities: Moderate performance drop. Indicates par-
tial sensitivity to polarity shifts like symptom presence vs. ab-

sence.
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(d) Numerical Perturbations: Least disruptive. Accuracy remains
mostly stable, suggesting LLMs underutilize quantitative signals
in clinical text.

Figure 3: LLMs show inconsistent resilience to clinically realistic perturbations. This figure illustrates how diagnostic accuracy
degrades as we increase perturbation intensity (0-100%) across four types. Masked entities cause the sharpest performance
drop, while numerical edits have minimal effect, implying a greater LLM reliance on qualitative than quantitative reasoning.

of surface-level evaluation in clinical reasoning: it misses internal
inconsistencies that lead to different predictions.

Figure 3 confirms this pattern across perturbation types. Masking
causes the sharpest accuracy drop, while numerical changes have
little effect, suggesting models may over-rely on surface cues and
underuse numerical information. To better understand how this
latent disagreement arises, we now examine the effect of specific
perturbation types.

6.2 Fragility by Perturbation Type

Masked entities lead to the largest drop in both accuracy and LDFR
as perturbation increases. This indicates strong dependence on ex-
plicitly stated symptoms. Negation causes a smaller but consistent
drop in LDFR and accuracy, suggesting that polarity cues impact
internal reasoning. Synonym and numeric changes maintain high
ROUGE and BERTScore values, but still result in latent shifts, es-
pecially at higher perturbation levels. Table 1 summarizes these

trends, showing how latent alignment degrades differently depend-
ing on the type of edit. Having established that perturbation types
induce varied latent instability, we next ask: do different models
handle this stress differently?

6.3 Fragility by Model

Model behavior under perturbation varies. GPT-40 and GPT-3.5-
turbo show lower LDFR and smaller accuracy drops for synonym
and numeric edits. In contrast, LLaMA-3.1 and Mistral are more
fragile under masking and negation, with LDFR values exceeding
0.5 in some cases. These trends are visualized in Figure 3, showing
how different models react to increasing perturbation severity in ac-
curacy. Notably, Mistral-7B, being a smaller and earlier-generation
model, demonstrates poorer robustness, suggesting that certain
diagnostic reasoning capabilities may emerge only at larger model
scales.
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centroid_displacement vs. Threshold
Dataset: super_seven | Method: numerical_perturbations
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Figure 4: Global embedding shifts do not directly predict diagnostic failures. This figure shows how perturbations move
embeddings away from their original centroid, measured by Euclidean distance. While masking and negation induce smooth,
monotonic drift, these displacements are weakly correlated with diagnosis changes, suggesting that even small shifts can cross

latent decision boundaries and lead to fragility.

6.4 Latent Dimensional Collapse by
Perturbation Type

To complement global centroid drift, we analyze how variance re-
distributes across PCA dimensions under increasing perturbation
(Figure 5). Under masked entities, up to 20-30% of total variance
is captured by a single dimension (e.g., dimension 752 in GPT-3.5
and LLaMA), indicating a bottleneck where embeddings compress
into narrow subspaces. Negation and synonym replacements show
model-specific trends: GPT-40 and Mistral maintain smoother vari-
ance distributions, while GPT-3.5 and LLaMA concentrate variance
more tightly. Numerical perturbations produce flat variance curves
across all models, reflecting stable and diffuse latent encodings.

These structured shifts align with our LDFR findings: as variance
concentrates in fewer dimensions, LDFR increases, especially un-
der masking and negation. Importantly, these effects occur within
the 90% variance PCA subspace (Appendix A.9), preserving in-
terpretability and classifier stability. In contrast, global centroid
displacement (Figure 4) increases smoothly but does not predict
diagnostic changes. Together, these results suggest that pertur-
bations expose low-dimensional instability patterns invisible to
surface-level metrics.

6.5 Real vs. Synthetic Notes

A key concern is whether our findings on synthetic notes hold for
real clinical documentation. To test this, real clinical notes from the

Table 3: Average tokens and entities per chunk for real and
synthetic notes.

Type Avg. Tokens | Avg. Entities
DiReCT 869.76 83.51
synthetic_open-mistral-7b 369.97 30.16
synthetic_gpt-40-mini-2024-07-18 533.28 27.49
synthetic_gpt-3.5-turbo-0125 328.36 31.98
synthetic_llama-3.1-8b-instant 554.54 22.10

DiReCT dataset show similar patterns of latent fragility as synthetic
notes. As shown in Table 2, correlations between LDFR and model
predictions consistently drop as perturbations increase, confirming
that our metric captures instability beyond synthetic settings.

Masked entity edits cause the largest decline in both cases,
though the drop is more severe in synthetic notes. Notably, nega-
tion leads to sharper degradation in real notes, likely due to the
complexity of natural language context. Synonym and numerical
changes have smaller effects, with both note types showing similar
trends. These results suggest that our framework generalizes across
data sources and remains effective even on longer, noisier clinical
text.
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Figure 5: Perturbations induce structured shifts in GPT-40-mini’s latent space. This figure shows how variance is distributed
across the top 5 PCA dimensions under each perturbation type. Masked entities cause variance to concentrate sharply along
a few axes, indicating semantic bottlenecks, whereas numerical perturbations yield flatter, more distributed profiles. Such
variance patterns reveal how fragility aligns with low-rank latent distortions.

Table 4: Clinical expert evaluation of synthetic notes. Scores range from 0-3, where higher values indicate better note quality
and diagnostic reasoning. Variability between reviewers highlights subjectivity in evaluating generated clinical text.

Note ID  Note Quality (R1) Note Quality (R2) Reasoning (R1) Reasoning (R2)
Note_0 2 3 0 2
Note_1 2 3 3
Note_2 1 3 2 3
Note_3 3 3 3 3
Note_4 2 2 3 2

6.6 Human Expert Validation

Two clinicians scored five synthetic notes (0-3 scale). Mean scores
were 2.0-2.7 across structure and diagnostic reasoning. Feedback
highlighted missing vitals, incomplete differentials, and mismatches
(e.g., hematemesis without GERD context). Table 4 summarizes
scores. These qualitative insights affirm the need for latent audits
even when surface fluency appears high.

6.7 Diagnostic Auditing Potential

LDFR identifies inputs where model outputs are unstable under
light perturbations, flagging cases for downstream trust calibration.
Unlike ROUGE or entity overlap, LDFR reveals semantic volatility
invisible to surface metrics, offering a potential tool for auditing
clinical assistant reliability. Taken together, our results show that
LDEFR captures subtle yet consequential breakdowns in diagnostic
stability, providing a promising direction for future auditing tools
in clinical Al systems.
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7 Conclusion

We present a framework to uncover latent diagnostic instability
in clinical language models by applying structured perturbations
to synthetic clinical notes and analyzing semantic boundary shifts
in latent space. Under entity masking, surface similarity remains
high across thresholds, yet diagnosis flips become increasingly fre-
quent highlighting fragility not captured by metrics like BERTScore.
LDEFR drops from 91.3% to 55% as perturbations increase, showing
that the latent classifier no longer follows the LLM’s diagnosis
reliably. This suggests that small changes in input can cause sig-
nificant shifts in latent space, exposing both semantic drift and
structural fragility. PCA-based boundary flips and per-axis variance
shifts reveal latent vulnerabilities in diagnostic reasoning. Of all
tested perturbations, entity masking proved most effective at ex-
posing instability, inducing sharp transitions in low-dimensional
latent space and misalignments that surface metrics fail to detect.
Together, our findings underscore the need for geometry-aware
evaluation to ensure safe, interpretable deployment of clinical LLMs
in real-world settings. Our experiments with real notes from Di-
ReCT and medical-specific models like MedGemma confirm that
LDFR-based fragility patterns persist across synthetic and real clin-
ical notes. Together, these findings support LDFR as a diagnostic
tool for internal reasoning instability and a complement to tra-
ditional surface metrics in clinical LLM evaluation. Our central
contribution, LDFR, offers a geometry-aware diagnostic signal that
is not captured by surface-level metrics. Its consistent degradation
under structured perturbations across both synthetic and real clin-
ical notes highlights its utility for model auditing and evaluation
beyond controlled benchmarks.

8 Limitations and Future Directions

Our framework offers a geometric perspective on diagnostic robust-
ness but has limitations. Synthetic notes, while controllable, may
not reflect real-world clinical variability, and using a fixed BERT
embedding space may misalign with model-specific representations.
While we include limited expert evaluation for unperturbed syn-
thetic notes, we did not assess whether clinician reviewers agree
with the diagnosis flips induced by perturbations. Future work
should involve expert adjudication of perturbed samples to vali-
date whether semantic edits, such as masking or negation, truly
warrant diagnostic change. We selected a 90% PCA variance thresh-
old based on the elbow plot (Appendix A.9), which showed that
most diagnostic signal is captured within 30-45 components. This
dimensionality preserves structure while ensuring that the LDFR
classifier remains stable and interpretable across both synthetic and
real note embeddings.

Future work will explore non-linear boundaries via manifold
learning, expand perturbation analysis, and align latent shifts with
expert judgments. Exploration of diagnostic manifolds as a founda-
tion for clinical robustness is another direction illucidated.
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A Appendix
A.1 Code and reproduction

All prompting templates and code to reproduce our results are
available at: https://github.com/unni12345/geometric_diagnostics

A.2 The Prompts

This prompt illustrated in Fig.6 is designed to transform a struc-
tured patient-physician dialogue into a synthetic clinical note. The
input includes socio-demographic details and question—answer
pairs labelled by symptom or antecedent type. The prompt pro-
vides a well-defined clinical template with standard sections (e.g.,
Chief Complaint, History of Present Illness, Physical Exam), guid-
ing the LLM to produce notes that are realistic, interpretable, and
diagnostic-ready. This structure ensures that downstream perturba-
tions can be applied in a controlled manner without compromising
the core semantic structure.

A.2.1 Clinical Note Prompt.

A.2.2  Forward Reasoning Prompt. This prompt illustrated in Fig.7
initiates forward diagnostic reasoning: from clinical note to inferred
diagnosis. The model is instructed to extract relevant observations
and formulate logical deductions in a step-by-step manner. This
chain-of-thought generation encourages explicit reasoning and
provides transparency into the model’s inference process. It is a
crucial step for ensuring diagnostic traceability in the synthetic
pipeline.

A.3 Backward Reasoning Prompt

This prompt illustrated in Fig.8 facilitates backward reasoning: from
an already inferred diagnosis to the supporting clinical evidence.
The model must align symptoms, findings, and history in a way
that supports the diagnosis logically. This step helps validate the
consistency of the model’s decision-making and serves as a diag-
nostic sanity check, reinforcing causal alignment between data and
prediction.

A.3.1 Aggregator Prompt. This prompt is illustrated in Fig.9 com-
pares the forward and backward reasoning chains and compels
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Patient Details:
Age: 44
Sex: F

Initial evidence provided: [{'question': 'Do you have pain
< somewhere, related to your reason for consulting?',
< 'is_antecedent': False, 'answer': True}]

Question & Answer Section:

For the question "Do you have pain somewhere, related to your
< reason for consulting?",

the patient replied 'True', which is categorized as a symptom.
For the question "Characterize your pain:", the patient

— replied 'sickening',

which is categorized as a symptom.

For the question "Do you feel pain somewhere?",
— provided 'upper chest',

indicating a symptom.

the patient

Clinical Report Template:

Based on the information provided, generate a comprehensive
< clinical report with the

following sections:

- Patient Details

- Chief Complaint (extracted from the initial evidence)

- History of Present Illness: Describe onset, duration,

< severity, and relevant history.

- Past Medical History: Summarize any significant conditions.
- Medications and Allergies: List current medications and any
< known allergies.

- Physical Examination: Include vitals, general appearance,
< and pertinent exam findings.

Figure 6: Prompt for Clinical Note Generation.

You are a diagnostic reasoning assistant. Read the following
< clinical note and generate

a step-by-step reasoning process that extracts key

— observations and logical deductions

leading to a diagnosis.

Clinical Note:

Provide the list of observations and deductions. Be concise.

Figure 7: Prompt for Forward Reasoning Generation.

You are a diagnostic reasoning assistant. Given the following
— clinical note and

the final diagnosis '<diagnosis_placeholder>', generate a

< backward reasoning chain

explaining how each observation supports the diagnosis.

Clinical Note:

Final Diagnosis: <diagnosis_placeholder>

Provide a concise list of observations and logical deductions.

Figure 8: Prompt for Backward Reasoning Generation.

the model to produce a final, consolidated rationale. The goal is to
reconcile both perspectives into a coherent diagnostic explanation,
reducing contradictions and highlighting mutually reinforcing ob-
servations. This step ensures logical integrity in the final output
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and simulates a clinician’s process of reviewing both presentation
and diagnostic hypothesis.

A.4 Note-to-Dialogue Comparison via
Surface-Level Metrics

For completeness, we report automatic evaluation scores comparing
the generated clinical notes to their source DDXPlus dialogues using
standard surface-level metrics. These include BERTScore, ROUGE-
L, and biomedical NER-based Jaccard and F1 scores, summarized in
Table 5.

The absolute values of these metrics are relatively low (e.g.,
BERTScore ranges between 0.54-0.58), which is expected given the
nature of the comparison: the source DDXPlus inputs are unstruc-
tured, sparse, and conversational, while the generated notes are
formal and structured. As a result, high token or span level overlap
is neither expected nor necessarily desirable.

We used bert-large-uncased for BERTScore and the d4data/biomedical-
ner-all model for entity-level scoring. Both are pre-trained general-
purpose tools and not specifically optimized for dialogue-to-note
mapping. Furthermore, BERTScore captures token-level similar-
ity and does not reflect higher-level clinical discourse structure or
reasoning coherence.

These scores are therefore included for completeness and relative
comparison across models, but they do not directly evaluate the
quality of diagnostic reasoning or factual consistency. In fact, high
surface-level similarity could indicate shallow copying, whereas
meaningful abstraction or reasoning may naturally result in lower
overlap—motivating the need for robustness evaluation beyond
traditional text metrics.

Table 5: Surface-level comparison between generated clin-
ical notes and their source DDXPlus dialogues. Metrics in-
clude BERTScore, ROUGE-L, and biomedical NER-based Jac-
card and F1 scores. The best-performing model per metric is
bolded. While Open-Mistral-7B ranks highest on BERTScore
and ROUGE-L, GPT-3.5-turbo yields the best entity-level
scores—indicating that surface similarity and clinical entity
preservation do not always align.

Model BERTScore ROUGE-L NER Jaccard NERF1
GPT-3.5-turbo-0125 0.546 0.221 0.171 0.283
GPT-40-mini-2024-07-18 0.559 0.219 0.141 0.243
LLaMA-3.1-8b-instant 0.575 0.240 0.161 0.270
Open-Mistral-7B 0.580 0.244 0.164 0.276

A.5 Supplementary Metric Plots

We have included full degradation plots for all NLP evaluation met-
rics—NER F1, ROUGE-L, and NER Jaccard—under each perturbation
type. These figures provide a comprehensive view of how different
perturbations affect semantic fidelity and entity preservation across
clinical LLMs.

A.5.1 NER F1vs. Threshold.
A.5.2 ROUGE-L vs. Threshold.

A.5.3 NER Jaccard vs. Threshold.
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You are a diagnostic reasoning aggregator. Compare the following two reasoning chains and

generate the final, consolidated rationale behind the diagnosis:

Forward Reasoning:
<—---- Forward Reasoning Chain----- >

Backward Reasoning:
<====- Backward Reasoning Chain----- >

Ensure that both chains are consistent in supporting the given diagnosis. Provide a concise

list of key observations and deductions.

Figure 9: Prompt for Aggregation and Verification of Reasoning Chains.
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ner_f1 vs. Threshold
Dataset: super_seven | Method: negated_entities

055 ® gpt-3.5-turbo-0125
gpt-40-mini-2024-07-18

o llama-3.1-8b-instant

@ open-mistral-7b

o . he
< 045 \
= .
T .
. .
.
0.40 —s
.
—
.
3
035 ~
=
0.0 0.2 0.4 0.6 0.8 10
Threshold
(b) Negated Entities
ner_f1 vs. Threshold
Dataset: super_seven | Method: numerical_perturbations
. -
0ss . .
;
0.50
bl
L .
n - o
045 ' -
» 3
.
040 © Opr3.Sturbo-0125
gpt-40-mini-2024-07-18
® llama-3.1-8b-instant
o openmistral-7b v
oo 02 o os os o

Threshold

(d) Numerical Perturbations

Figure 10: Entity-level recognition performance degrades under perturbation, particularly with masking and synonym edits.
This figure shows how NER F1 scores drop as perturbation intensity increases across four types. Masked and synonym-modified

inputs reduce clinical entity recall most significantly.

A.6 Hyperparameters for Geometric Analysis
A.6.1 Embedding Extraction.

Embedding Model: ClinicalBERT (pretrained, frozen)
Tokenization: BertTokenizer (max length = 512 tokens)
Embedding Representation: Mean pooling over last hid-
den layer

Embedding Dimension: 768

A.6.2  PCA Reduction.
e Input: Embeddings of unperturbed clinical notes (N = 100)

e Normalization: Zero-centered with unit variance per di-
mension

e Components Retained: 90% explained variance (typically 30-
40 components)

e Library Used: scikit-learn PCA (randomized SVD solver)

A.6.3 Latent-Space Classifier.

o Classifier: Logistic Regression (1-vs-rest)

e Training Set: PCA-reduced embeddings of original (unper-
turbed) notes

e Labels: Ground truth diagnoses (7-class classification)
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Regularization: L2, inverse regularization strength C =
10.0

Solver: lgfbs

Max Iteration: 1000

Cross-validation: 10-fold

A.7 TIllustrated Example

The following example illustrates the flow of clinical data for a
case with GERD as diagnosis. We illustrate the case of Masked
Perturbation at 100%. The following entities will be masked during
the perturbation.

We illustrate the Clinical Note with Fig 13, Forward Diagnosis
for this case with Fig 14, backward diagnosis with Fig 15 and final
diagnostic reasoning with Fig 16.

The masked entities perturbation case is illustrated with Fig 17,
forward reasoning with Fig 18, backward reasoning with Fig 19,
final reasoning with Fig 20.

chronic sinusitis, persistent cough, family history of asthma,
26-year-old male, hospitalizations, respiratory distress, asthma
attacks, bronchodilator, wheezing, common allergies

"Patient Details:
Age: 57
Sex: Female

Chief Complaint:
The patient reports experiencing symptoms that worsen after
— eating.

History of Present Illness:

The patient describes her pain as haunting, sensitive, a knife
stroke, sickening, and scary. The pain is located in the
lower chest, upper chest, hypochondrium (left), and
epigastric regions. The intensity of the pain is unknown,
and it radiates to the upper chest. The pain's onset and
duration are unknown, but it is alleviated while sitting
up. The patient also reports a burning sensation that
starts in the stomach and goes up into the throat,
associated with a bitter taste in the mouth.

rrreerre

Past Medical History:

The patient has a hiatal hernia and asthma, for which she has
— used a bronchodilator in the past. She is currently

< pregnant.

Medications and Allergies:

No current medications were reported, but the patient has a
— history of using a bronchodilator for asthma. She has no
< known allergies.

Physical Examination:

Vitals: Not provided in the data

General Appearance: Not provided in the data

Pertinent Exam Findings: The patient reports pain in various
chest regions, and a burning sensation with a bitter taste
in the mouth. The pain is alleviated while sitting up. No
further physical examination findings were provided in the
data.

rree

Additional Notes:

The patient also reports being significantly overweight
compared to people of the same height, drinking alcohol
excessively, and smoking cigarettes. She has not traveled
out of the country in the last 4 weeks. These factors may
be relevant to the patient's current symptoms and should
be considered in the diagnostic and management process."

rreee

Figure 13: Clinical Note for diagnosis GERD
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"1. The patient is a 57-year-old female.

. She reports symptoms worsening after eating.

. The pain is described as haunting, sensitive, a knife
stroke, sickening, and scary.

. The pain is located in the lower chest, upper chest,
hypochondrium (left), and epigastric regions.

. The pain radiates to the upper chest.

. The intensity and duration of the pain are unknown.

. The pain is alleviated while sitting up.

. A burning sensation is reported, starting in the stomach
and going up into the throat.

. The patient has a bitter taste in the mouth.

10. She has a history of hiatal hernia and asthma.

11. She has used a bronchodilator for asthma in the past.
12. She is currently pregnant.

13. No current medications were reported.

14. She has no known allergies.

15. The patient reports being significantly overweight.

16. She drinks alcohol excessively.

17. She smokes cigarettes.

18. No further physical examination findings were provided.
19. The patient has not traveled out of the country in the
— last 4 weeks.

20. These factors (overweight, alcohol consumption, smoking)
— may be relevant to the patient's current symptoms."

wfm\loﬁmf-b-fwl\)

Figure 14: Forward reasoning for GERD

'1. Patient reports symptoms worsening after eating.
(Observation)

Patient describes pain as haunting, sensitive, and
radiating to the upper chest. (Observation)

Patient reports a burning sensation from stomach to throat
with a bitter taste. (Observation)

Patient has a hiatal hernia. (Past Medical History)

Symptoms of GERD (gastroesophageal reflux disease) include
heartburn, regurgitation, and pain that worsens after
eating. (Knowledge of GERD)

GERD symptoms can be exacerbated by hiatal hernia.
(Knowledge of GERD and hiatal hernia)

The patient's symptoms, including pain, burning sensation,
and bitter taste, are consistent with GERD. (Logical
deduction)

The patient's history of hiatal hernia, along with her
symptoms, increases the likelihood of GERD. (Logical
deduction)

The patient's symptoms are not typical of other conditions,
such as heart disease or gallbladder disease, given her
age and lack of other risk factors. (Logical deduction)
Therefore, the most likely diagnosis is GERD. (Final
deduction)"

flrepleprdropfoasp 2y
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Figure 15: Backward reasoning for GERD

A.8 Per-Dimension Variance Plots and
Interpretation Synthetic Notes

To support our analysis in Section 6.4, we present detailed variance
decomposition plots for each model under all perturbation types.
Each figure shows the top 5 latent dimensions with the highest
explained variance across perturbation thresholds (0%, 25%, 50%,
75%, 100%). Illustrated through Fig 22, Fig 21 and Fig 23.

Key Insights

e Dimensions such as 273 and 752 consistently exhibit high
sensitivity to masked and negated entity perturbations.
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"The forward and backward reasoning chains are consistent in
< supporting the diagnosis of GERD (gastroesophageal reflux
< disease).

Observations:

1. Symptoms worsen after eating.

2. Pain described as haunting, sensitive, and radiating to the
< upper chest.

3. Burning sensation from stomach to throat with a bitter

— taste.

Logical Deductions:

Patient's symptoms are consistent with GERD.

Patient's history of hiatal hernia increases the likelihood
of GERD.

Patient's symptoms are not typical of other conditions,
such as heart disease or gallbladder disease.

The patient's lifestyle factors (overweight, alcohol
consumption, smoking) may be relevant to her symptoms.

The patient's symptoms are alleviated while sitting up,
which is a common symptom of GERD.

The patient's use of a bronchodilator for asthma does not
directly contribute to the diagnosis of GERD, but it does
not rule it out either.

The patient's current pregnancy may not directly affect the
diagnosis of"

[ N{lo@[ o &[] w] ~=

Figure 16: Aggregated reasoning for GERD

"Patient Details:
Age: 57
Sex: [MASK]

Chief Complaint:
The patient reports experiencing [MASK] that worsen after
— eating.

History of Present Illness:

The patient describes her [MASK] as haunting, sensitive, a
knife stroke, sickening, and scary. The [MASK] is located
in the [MASK], [MASK], hypochondrium (left), and [MASK].
The intensity of the [MASK] is unknown, and it radiates to
the [MASK]. The [MASK]'s onset and duration are unknown,
but it is alleviated while sitting up. The patient also
reports a [MASK] that starts in the [MASK] and goes up
into the [MASK], associated with a [MASK] in the mouth.

rrreerre

Past Medical History:
The patient has a [MASK] and [MASK], for which she has used a
< [MASK] in the past. She is currently [MASK].

Medications and Allergies:

No current medications were reported, but the patient has a
— history of using a [MASK] for [MASK]. She has no known
— allergies.

Physical Examination:

Vitals: Not provided in the data

General Appearance: Not provided in the data

Pertinent Exam Findings: The patient reports [MASK] in various
< chest regions, and a [MASK] with a [MASK] in the mouth.

< The [MASK] is alleviated while sitting up. No further

< physical examination findings were provided in the data.

Additional Notes:

The patient also reports being significantly [MASK] compared
to people of the same height, drinking [MASK] excessively,
and [MASK]. She has not traveled out of the country in the
last 4 weeks. These factors may be relevant to the
patient's current [MASK] and should be considered in the
diagnostic and management process."

rreee

Figure 17: Masked Clinical Note for diagnosis GERD

Vijayaraj
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Patient is a 57-year-old [MASK] with a chief complaint of
unexplained discomfort worsening after eating.

The discomfort is described as haunting, sensitive, a knife
stroke, sickening, and scary.

The discomfort is located in the epigastric region, left
hypochondrium, and umbilical region.

The intensity and duration of the discomfort are unknown,
but it radiates to the back.

The discomfort is alleviated while sitting up.

The patient also reports a burning sensation starting in
the throat and going up into the mouth, associated with a
sensation in the mouth.

The patient has a history of hypertension and diabetes, and
has used a diuretic in the past.

No current medications were reported, but the patient has a
history of using a diuretic for hypertension.

The patient has no known allergies.

. The patient reports feeling significantly underweight,

drinking alcohol excessively, and having a poor appetite.

. No further physical examination findings were provided.
. The patient has not traveled out of the country in the

last 4 weeks.

. These factors may be relevant to the patient's current

symptoms and should be considered in the diagnostic and
management process."

Figure 18: Forward reasoning for Masked Perturbation of
100% GERD

DR A )

1.

The patient reports symptoms of heartburn that worsen
after eating.
The heartburn is described as haunting, sensitive, and
radiating to the left hypochondrium and back.
The patient has a history of GERD and has used a proton
pump inhibitor (PPI) in the past.
The patient's symptoms are alleviated while sitting up,
which is a common symptom of GERD.
The patient's excessive alcohol consumption and obesity may
contribute to the worsening of GERD symptoms.
No physical examination findings suggest an alternative
diagnosis, such as a cardiac issue.

Logical deductions:

(A S e

The patient's symptoms of heartburn, worsened by eating and
alleviated by sitting up, are consistent with GERD.

The patient's history of GERD and use of a PPI support the
diagnosis of GERD.

The patient's obesity and excessive alcohol consumption may
exacerbate GERD symptoms.

The absence of physical examination findings suggesting an
alternative diagnosis supports the diagnosis of GERD."

Figure 19: Backward reasoning for Masked Perturbation of
100% GERD

e GPT-3.5 and LLaMA display stronger activation along single

dimensions, while GPT-40 exhibits more distributed variance
across axes.

o Numerical perturbations exhibit the flattest distribution, in-

A8.1

dicating resilience in quantitative embeddings.

Composite Visualization. To reduce visual clutter, we ag-

gregate per-model variance breakdowns into grouped figures by
perturbation type. Full-resolution figures per model are available
upon request.
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"The forward and backward reasoning chains are consistent in
< supporting the diagnosis of GERD.

Observations:

1. Patient's discomfort worsens after eating and is alleviated
< while sitting up.

2. Discomfort is described as haunting, sensitive, and

< radiates to the left hypochondrium and back.

3. Patient has a history of hypertension, diabetes, and past
— use of a diuretic.

4. Patient reports excessive alcohol consumption, poor

— appetite, and feeling significantly underweight.

Logical deductions:

1. Symptoms are consistent with GERD.

2. Patient's history of GERD and use of a PPI support the
— diagnosis.

3. Patient's lifestyle factors may exacerbate GERD symptoms.
4. Absence of physical examination findings suggesting an
< alternative diagnosis supports the diagnosis of GERD."

Figure 20: Final diagnosistic reasoning for Masked Perturba-
tion of 100% GERD

A.9 Elbow Plot of Latent Embedding
Dimensionality

To select an appropriate dimensionality for LDFR evaluation, we
performed Principal Component Analysis (PCA) on note embed-
dings from both synthetic and real clinical notes. The goal was to
retain sufficient variance for meaningful diagnostic structure while
avoiding overfitting or noise amplification in the latent classifier.

Figure 24 shows the cumulative explained variance as a function
of the number of principal components.

For synthetic notes, 90% of variance is typically captured within
30-35 components. In contrast, real clinical notes require approxi-
mately 45 components to reach the same threshold, consistent with
their longer length and richer entity density.

We therefore fixed the PCA threshold at 90% explained variance
throughout our experiments. This ensures that the latent classifier
operates in a stable, low-dimensional subspace that is both inter-
pretable and aligned with clinical signal, as supported by the elbow
point in both cases.

Agentic & GenAl Evaluation at KDD 2025, August 4, 2025, Toronto, Canada
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Variance Explained by Top 5 Dimensions
Dataset: super_seven, Model: open-mistral-7b, Perturbation: perturbed_text_masked_entities
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Figure 21: Variance explained by top 5 latent dimensions for open-mistral-7b across perturbation types.
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Variance Explained by Top 5 Dimensions
Dataset: super_seven, Model: llama-3.1-8b-instant, Perturbation: perturbed_text_masked_entities
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Figure 22: Variance explained by top 5 latent dimensions for lama3i8binstant across perturbation types.
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Figure 23: Variance explained by top 5 latent dimensions for gpt3_5turbo@125 across perturbation types.
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PCA Elbow Plot: Real vs. Synthetic Clinical Note Embeddings
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Figure 24: PCA Elbow Plot comparing cumulative explained variance for real (DiReCT) and synthetic clinical note embeddings.
Real notes require more dimensions to capture 90% of variance, reflecting their greater complexity and redundancy.
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